Analisis Ramalan Cuaca di Sekupang, Kota Batam Menggunakan Algoritma Decision Tree dan Confusion Matrix
Keywords:
Weather, Decision Tree, PredictionAbstract
Weather is an atmospheric condition consisting of variables such as temperature, humidity, precipitation, wind, and air pressure and describes the state of the environment at a particular time and place. This research discusses the use of the Decision Tree algorithm in predicting conditions. Decision trees can model in the form of a tree structure, where each internal node represents a trait or feature, each branch represents a decision rule, and each leaf or leaflet represents a category or outcome. This research aims to predict the weather by applying data classification methods using the decision tree algorithm. The research method involves classifying weather data based on group attributes such as wind speed, temperature, rainfall, and weather. Decision tree is a model that maps decisions in the form of a tree. This research uses 104 historical weather data obtained from weather online, the dataset used includes time, temperature, cloud percent, rainfall, and weather. Test results with 70% of the dataset are useful for testing the model, and 30% are used to train model performance. Model evaluation is done using accuracy, precision, recall. The results show a model accuracy of 96.77%, indicating good model performance in predicting weather conditions.
References
Amril Mutoi Siregar, T. S. (2020). Klasifikasi untuk prediksi cuaca menggunakan ensemble learning. Jurnal Pengkajian dan Penerapan Teknik Informatika, 13, 138-147.
As'ad, B. (2016). Prediksi keputusan menggunakan metode klasifikasi Naïve Bayes, One-R, dan Decision Tree. 10.
DataCamp. (2024, June 5). What is a confusion matrix in machine learning. Retrieved July 15, 2024, from https://www.datacamp.com/tutorial/what-is-a-confusion-matrix-in-machine-learning
Dwi, M. B. (2012). Klasifikasi data karyawan untuk menentukan jadwal kerja menggunakan metode decision tree. Jurnal IPTEK, 17-23.
Kartasapoetra, A. d. (2010). Teknologi konservasi tanah dan air. Jakarta: Rineka Cipta.
Keshet, Y. (2011). Classification system in the light of sociology of knowledge. Journal of Documentation, 144-158.
Kristopher, H., Herwindiati, D. E., & Sutrisno, T. (2023). Penerapan metode decision tree untuk perkiraan cuaca Kota Bekasi. 11.
Lorio. (2022, December 8). RapidMiner. Retrieved July 15, 2024, from https://binus.ac.id/entreprenur/2022/12/08/rapidminer/
Muzakir, A., & Wulandari, R. A. (2016). Jurusan Informatika. Model data mining sebagai prediksi penyakit hipertensi kehamilan dengan teknik decision tree. 6.
RevoU. (2024). Decision tree. Retrieved July 15, 2024, from https://revou.co/kosakata/decision-tree
Riau, B. P. (2022, August 17). Provinsi Kepulauan Riau. Retrieved July 24, 2024, from https://kepri.bpk.go.id/provinsi-kepulauan-riau/
Rofani, R. O. (2023). Penerapan metode klasifikasi decision tree dalam prediksi kanker paru-paru menggunakan algoritma. Jurnal Tekno Kompak, 126-136.
Sudarsono, B. G., Leo, M. I., Santoso, A., & Hendrawan, F. (2021). Analisis data mining data Netflix menggunakan aplikasi Rapid Miner. Journal of Business and Audit Information Systems, 9.
Syariffudin, F. (2022, July 21). Klasifikasi artikel-artikel jurnal Pustakaloka berdasarkan skema JITA. Jurnal Ilmu Perpustakaan dan Informasi, 20-37.
Telkom University. (2024, April 18). Flowchart pengertian: Fungsi, jenis, simbol, dan contohnya. Retrieved July 22, 2024, from https://bee.telkomuniversity.ac.id/pengertian-flowchart-fungsi-jenis-simbol-dan-contohnya/
Wibawa, A. P., Aji Purnama, M. G., Akbar, M. F., & Dwiyanto, F. A. (2018). Metode-metode klasifikasi. 3, 134.
Wonderful Indonesia. (2023, July 20). Musim, iklim dan cuaca. Retrieved July 23, 2024, from https://www.indonesia.travel/id/id/informasi-umum/musim-iklim-dan-cuaca.html
World Weather Online. (2024, June 26). Sekupang weather. Retrieved July 8, 2024, from https://www.worldweatheronline.com/sekupang-weather/riau-island/id.aspx
Zaki, F. (2014). Konsep data mining algoritma.