Klasifikasi Faktor yang Mempengaruhi APS Dengan IPM di Kab/Kota Provinsi Papua pada Algoritma Decision Tree C4.5

Authors

  • Siti Zalleha Insitut Teknologi Batam
  • Naufal Indra Lesmana Insitut Teknologi Batam
  • Anisya Maylani Insitut Teknologi Batam
  • Gede Yoga Pradnayana Insitut Teknologi Batam

Keywords:

School Participation Rates, Human Development Index, Decision Tree, C4.5 Algorithm, Papua Province.

Abstract

This research aims to identify the most significant factors influencing school participation rates (APS) in Papua Province's districts and cities using Human Development Index (IPM) indicators and the C4.5 decision tree algorithm. The data includes APS and IPM from various districts and cities in Papua Province for the period 2019-2021. Data processing was conducted using RapidMiner, employing the gain ratio criterion for the decision tree algorithm. The analysis reveals several significant factors affecting APS, such as socio-economic conditions, teacher quality, and physical accessibility to schools. The resulting decision tree provides insights into how each factor specifically impacts APS in each district and city. High IPM districts generally show high APS. For instance, Jayapura District consistently demonstrates high APS across all education levels in alignment with its high IPM. Conversely, low IPM districts like Tolikara exhibit low APS across all education levels, indicating a need for focused interventions to enhance living conditions and educational access.

References

Abdulwahid, S. (2018). Development of an efficient mechanism for rapid protocols using NS-2 simulator. Aptikom Journal on Computer Science and Information Technologies, 13-20.

Adithia, B. (2022, December 25). Fungsi data analytics bagi perusahaan. (U. N. Service, Producer, & Universitas Multimedia Nusantara). Retrieved July 15, 2024, from https://www.umn.ac.id

Badan Pusat Statistik. (n.d.). papua.bps.go.id. Retrieved July 12, 2024, from https://papua.bps.go.id/indicator/26/115/1/-metode-baru-indeks-pembangunan-manusia.html

Badan Pusat Statistik. (n.d.). papua.bps.go.id. Retrieved July 10, 2024, from https://papua.bps.go.id/indicator/28/140/1/angka-partisipasi-sekolah-aps-.html

Dwi, M. B., & Slamat, A. F. (2012, May). Klasifikasi data karyawan untuk menentukan jadwal kerja menggunakan metode decision tree. Jurnal IPTEK, 16, 17-23.

Endraswara, A. (2016). Analisis dan perancangan sistem informasi akutansi berbasis sistem komputerisasi dengan menggunakan metode rapid application development (RAD) pada usaha Woodshouse. 20-34.

Fruan, L. H., & Li, T. H. (2020). A modified backward elimination approach for the rapid classification of Chinese ceramics using laser-induced breakdown spectroscopy and chemometrics. Journal of Spectrometry, 518-525.

Zaki, F. (2014). Konsep data mining algoritma.

Ilham, B., Sopyan, S., Ramdam, N., Fitriani, & Yoga, M. (2021). Analisis pengendalian mutu di bidang industri makanan. 2186-2190.

Kalsum, U. (2009, February 11). Implementation of decision trees for decision: Insurance Takaful company. 21-55.

Keshet, Y. (2011). Classification system in the light of sociology of knowledge. Journal of Documentation, 144-158.

Faid, M., Jasri, M., & Rahmawati, T. (2019). Perbandingan kinerja tool data mining Weka dan RapidMiner dalam algoritma klasifikasi teknika. 11-16.

Niswatin, R. K. (2022). Analisis metode decision tree untuk mengidentifikasi faktor penentu keberhasilan sistem pembelajaran dalam jaringan. Ilmiah Komputer, 335-345.

Nurrahman, & Aminah, S. (2022, December). Klasifikasi penerima bantuan sosial di Desa Batuah. TEKINKOM, 5(2), 271-279.

Panero, J. (2003). Dimensi manusia dan ruang interior. Jakarta: Erlangga.

Pascalina, D., Raymondhus, W., & Christina, J. (2023). Pengukuran kesiapan transformasi digital smart city menggunakan aplikasi RapidMiner. Techomedia Journal (TMJ), 293-302.

Prasojo, L., Mukminin, A., & Mahmudah, F. (2017). Manajemen strategi human capital. UNY Press.

Rahmatin, & Soejoto. (2017). Pengaruh tingkat kemiskinan dan jumlah sekolah terhadap angka partisipasi sekolah (APS) di Kota Surabaya. Pendidikan Ekonomi Manajemen dan Keuangan, 127-140.

Rofani, R., Oktavina, L., & Vernanda, D. (2023). Penerapan metode klasifikasi decision tree dalam prediksi kanker paru-paru menggunakan algoritma C4.5. Jurnal Tekno Kompak, 126-139.

Shevtsova, & Shemaieva. (2020). Content analysis of European library and information science. Tecnium Social Sciences Journal, 161-170.

Song, Y., & Ying, L. (2015). Decision tree methods: Application for classification and prediction. Shanghai Archive of Psychiatry, 130.

Syafarudin, F. (2022). Klasifikasi artikel-artikel jurnal Pustakaloka. Ilmu Perpustakaan dan Informasi, 20-37.

United Nations Development Programme. (1995). Human development report. New York: United Nations Development Programme.

Plotnikova, V., Dumas, M., & Miliani, F. (2020). Adaptations of data mining methodologies: A systematic literature review. PeerJ Computer Science, 267.

Virdam, F., & Ariani, M. B. (2023, February 28). Analisis faktor yang mempengaruhi angka partisipasi sekolah di Sulawesi. Development Economic and Digitalization, 2(1), 20-35.

Y.N., Y., Dewa, & Prasetyo, A. (2020). Faktor-faktor yang memengaruhi partisipasi sekolah penduduk usia 16-18 tahun (SMA/sederajat) di Provinsi Jawa Barat pada tahun 2021. 175-184.

Downloads

Published

2024-08-01

How to Cite

Siti Zalleha, Naufal Indra Lesmana, Anisya Maylani, & Gede Yoga Pradnayana. (2024). Klasifikasi Faktor yang Mempengaruhi APS Dengan IPM di Kab/Kota Provinsi Papua pada Algoritma Decision Tree C4.5. ⁠EKOSPHERE: Jurnal Ekonomi Pembangunan Dan Manajemen, 1(3), 01–14. Retrieved from https://ibnusinapublisher.org/index.php/EKOSPHERE/article/view/20